Anticardiolipin Antibodies in the Sera of Patients with Diagnosed Chronic Fatigue Syndrome

Yoshitsugi Hokama, Cara Empey Campora,* Cynthia Hara, Tina Kuribayashi, Diana Le Huynh, and Kenichi Yabusaki

Department of Pathology, John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, Hawaii

Examination of anticardiolipin antibodies (ACAs) in the sera of patients clinically diagnosed with chronic fatigue syndrome (CFS) using an enzyme-linked immunoassay procedure demonstrated the presence of immunoglobulin M isotypes in 95% of CFS serum samples tested. The presence of immunoglobulin G and immunoglobulin A isotypes were also detected in a subset of the samples. Future studies will focus on elucidating whether alterations to mitochondrial inner membranes and/or metabolic functions play a possible role in the expression of ACAs.

Key words: chronic fatigue syndrome; anticardiolipin; cardiolipin; ELISA

INTRODUCTION

Recent competitive inhibition assays inferred the presence of the phospholipid cardiolipin (CL) in serological samples from patients clinically diagnosed with chronic fatigue syndrome (CFS), suggesting that “acute phase lipids” may be part of disease pathogenesis in patients with CFS (1). These lipids may be analogous to “acute phase proteins” triggered by cytokines involved in the inflammatory processes in the liver such as C-reactive protein and serum amyloid A, which have been reported in several disease states (1). This study examines the sera of CFS patients for anticardiolipin antibodies (ACAs) and demonstrates that 95% of CFS samples tested showed ACA of the immunoglobulin M isotype in patient sera.

Certain marine toxins such as ciguatoxin are taken up by the liver and produce symptoms similar to CFS. Testing for antibodies to CL is routinely performed as one of a panel of tests for autoimmune disorders (2). In our studies, the presence of ACA at relatively high titers in patients with CFS suggests the possibility of alterations to the inner membranes of liver mitochondria, thereby exposing CL in a manner so as to elicit an antibody response to CL.

MATERIALS AND METHODS

CFS Patient Serum Collection

A total of 40 serum samples from individuals (females, \(n = 24 \), age range: 25–71; males, \(n = 16 \), age range: 26–77) clinically diagnosed with CFS were obtained from patients’ physicians from various regions of the United States. The criteria for clinical diagnosis of CFS were based on Fukuda et al. (3) as accepted by the Centers for Disease Control in Atlanta, Georgia.

Enzyme-Linked Immunoassay Method for ACA

The enzyme-linked immunoassay (ELISA) method was performed according to the instructions from the commercial ELISA kit to quantify IgA, IgG, and IgM ACA (QUANTA Lite ACA Anticardiolipin Kit, INOVA Diagnostics Inc., San Diego, CA).

Briefly, polystyrene microwell ELISA plates coated with a purified CL antigen were incubated with a dilution of the serum sample for 30 min at 18–22°C. The plates were washed three times with phosphate-buffered saline, and then incubated with 100 μL goat anti-human IgA, IgG, or IgM peroxidase conjugate under the same conditions. After additional washes, the plates were
incubated with 100 µL hydrogen peroxide plus tetra-
methylbenzidine in the dark for 30 min at 18–22°C. The
enzymatic reactions were stopped with 0.344 M sulfuric
acid and absorbance at 450 nm was measured using a
microplate reader. The ACA titer of each serum sample
was calculated using a reference curve consisting of five
standards of known concentrations of IgA, IgG, or IgM
ACA. The ACA titer was reported as standard IgA
anticardiolipin units (APL), standard IgG ant卡dioli-
pin units (GPL), or standard IgM ant卡dioli-pin units
(MPL), and was reported as positive for concentrations
at or above 20 phospholipid (PL) units, and negative for
concentrations fewer than 20 PL units.

RESULTS

The ELISA results for ACA isotypes of the 40 serum
samples from patients previously diagnosed with CFS are
shown in Table 1. In addition to CFS, several
patients also had confirmed diagnoses of type 2 diabetes,
chronic lymphocytic leukemia (CLL), and fungal
allergies.

The IgM isotype of ACA was present in 95% of the
samples tested (38/40). The IgG isotype was present in
10% of the samples tested (4/40), and the IgA isotype
was found in 2.5% of the samples tested (1/40). All four
serum samples that were positive for IgG were also
positive for IgM. Only one patient sample was positive
for all three isotypes.

DISCUSSION

A survey of the literature reports ACAs as common
serological markers in many different types of diseases,
including viral diseases such as illnesses resulting from
chemical (1) and marine toxin exposure (4,5,6), HIV
(7,8) and Epstein-Barr virus (9), hematological cancers
including CLL and acute myelocytic leukemias, expo-
sure to fungal organisms, malaria, and staphylococcus
infections (10,11), and autoimmune diseases such as
multiple sclerosis, systemic lupus erythematosus, auto-
immune hepatitis, and more (2). This study demon-
strates that a large percentage of patients clinically
diagnosed with CFS have elevated levels of the IgM
isotype to CL (95%), suggesting that CFS may be an
autoimmune condition.

For comparison, in clinically “normal” individuals,
which can be generally classified as those who meet the
following criteria: (a) no severe diseases, (b) no drug or
alcohol dependence, (c) no clinical or laboratory
evidence of systemic lupus erythematosus or other
autoimmune disorder, and (d) no antibodies that might
cross react with ACAs, one study showed that 77.3% (180/233)
of assayed individuals had negative ACA
titors, 15.0% (35/233) were considered low positives,
and 7.7% (18/233) had moderately high titors (12). The
study identified 38 (16.3%) subjects with isolated IgG
isotype and 11 (4.7%) with isolated IgM isotype
 elevations, with four participants (1.7%) found to have
both ACA isotypes increased, although it should be
noted that ACA-positive subjects were slightly older and
had a somewhat higher rate of cardiac disease than
ACA-negative subjects (12).

As a possible autoimmune disease, CFS patients may
be treated by suppression of the ACA or by diminishing
the antigen CL in serum. Previous studies have shown
that treatment with monoclonal antibodies to B cells
reduces ACA levels to normal in patients with auto-
immune disease, leading to clinical improvements.
Specifically, Rituximab, a chimeric monoclonal CD20
antibody, has been shown to normalize high ACA
serum titers of patients with autoimmune systemic lupus
erythematosus, rheumatoid arthritis, autoimmune
thrombocytopenia, and autoimmune hemolytic anemia.
Rituximab may serve as an effective therapeutic agent
for ameliorating the symptoms of CFS (11,13). There-
fore, classification of CFS as an autoimmune disorder
may serve to increase the availability of treatment
options for patients suffering from the disease.

Experiments are underway to further elucidate why
ACAs are produced in individuals afflicted with CFS.
Such studies include investigating the effects of specific
chemical agents, marine toxins, and ACAs on mito-
chondrial metabolic pathways that are indicative of
reduced or blocked energy production that may lead to
the fatigued state in CFS. Such studies may lead to the
development of potential therapeutic agents to block or
reduce such interactions.

REFERENCES

phospholipids related to the cardiolipin of mitochondria in the
sera of patients with chronic fatigue syndrome (CFS) chronic
ciguatera fish poisoning (CCFP), and other diseases attributed to
chemicals, Gulf War, and marine toxins. J Clin Lab Anal
Edwards JCW, Isenberg DA. B cell depletion therapy for patients

