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Introduction
To establish infections in vivo, viruses must replicate in the

face of powerful immune defence mechanisms including those
induced by interferons (IFNs). The effectiveness of the IFN
response has led to many viruses developing specific
mechanisms that antagonize the production or actions of IFNs.
Indeed, in order to replicate efficiently in vivo, it seems likely
that all viruses must, at least to a degree, have some means of
circumventing the IFN response either by limiting IFN
production or by blocking IFN actions. However, virus
countermeasures to the IFN response are rarely absolute and
the IFN response, by limiting virus spread, buys time for the
generation of an acquired immune response to the invading
virus. Nevertheless, the speed and efficiency by which a given
virus circumvents the IFN response may be critical deter-
minants in its host range and pathogenicity. In part A of this
article, we review how virus infections lead to the production
of IFNs (section 1), how IFNs induce the transcription of their
target genes (section 2) and how these target genes exert their
antiviral effects (section 3). Part B of this article reviews the
strategies used by viruses to inhibit IFN production (section 4),
IFN signalling (section 5) and}or specific antiviral functions
(section 6).

The IFNs are a large family of multifunctional secreted
proteins involved in antiviral defence, cell growth regulation
and immune activation. The IFNs may be classified into two
distinct types. Type I IFNs are produced in direct response to
virus infection and consist of the products of the IFN-α
multigene family, which are predominantly synthesized by
leukocytes, and the product of the IFN-β gene, which is
synthesized by most cell types but particularly by fibroblasts.
Type II IFN consists of the product of the IFN-γ gene and,
rather than being induced directly by virus infection, is
synthesized in response to the recognition of infected cells by
activated T lymphocytes and natural killer (NK) cells (reviewed
in Vilcek & Sen, 1996).
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Type I IFN (IFN-α}β) and type II IFN (IFN-γ) share no
obvious structural homology. However, functional similarities
exist due to a broad overlap in the types of genes that they
induce (reviewed in Stark et al., 1998 ; summarized in Fig. 1). It
is clear that IFNs can induce transcription of a significant
number of genes. In addition to the well-characterized gene
products described below, large-scale screening using oligo-
nucleotide arrays has identified several novel human IFN-
inducible genes that are induced by either IFN-α}β or IFN-γ or
both (Der et al., 1998). The importance of IFN in mediating
responses to virus infections is established by the fact that mice
lacking IFN-α}β (Muller et al., 1994 ; Fiette et al., 1995 ; Hwang
et al., 1995 ; Rousseau et al., 1995 ; Steinhoff et al., 1995 ; van
den Broek et al., 1995a, b ; Garcia-Sastre et al., 1998 ; Mrkic et
al., 1998 ; Yeow et al., 1998 ; Cousens et al., 1999 ; Grieder &
Vogel, 1999 ; Grob et al., 1999 ; Johnson & Roehrig,
1999 ; Nunez, 1999) or IFN-γ (Huang et al., 1993 ; Muller et al.,
1994 ; Fiette et al., 1995 ; van den Broek et al., 1995a, b ;
Bovolenta et al., 1999 ; Cantin et al., 1999 ; Dorman et al., 1999 ;
Grob et al., 1999 ; Nunez, 1999 ; Tay et al., 1999) receptors are
unable to mount efficient responses to a large number of
viruses. Importantly, there are often differences in the require-
ments for the two types of IFN in resolving specific virus
infections, and the systems are non-redundant in many cases.
Both types of IFN stimulate an ‘antiviral state ’ in target cells,
whereby the replication of virus is blocked or impaired due to
the synthesis of a number of enzymes that interfere with
cellular and virus processes. Both types of IFN can also slow
the growth of target cells or make them more susceptible to
apoptosis, thereby limiting the extent of virus spread. Finally,
both types of IFN have profound immunomodulatory effects
and stimulate the adaptive response. However, whilst both
IFN-α}β and IFN-γ influence the properties of immune effector
cells, they show significant differences, and it is these extended
cytokine functions that probably account for the different
spectrums of antiviral activities of the two types of IFN.

A. Production and actions of IFNs
1. Virus induction of IFN genes

The induction of IFN-β expression by virus infection of
fibroblastoid cells has been the subject of intensive research. It
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Fig. 1. The biological properties of α/β
and γ IFNs. IFNs α/β and γ bind to
specific surface receptors on primary
target cells and induce the transcription
of a variety of genes that mount an
antiviral response. It is characteristic of
these gene products that they often
depend upon viral dsRNA as a co-factor
in order to ensure that they are only
active under conditions of infection. Thus,
PKR and 2«–5« oligoadenylate synthetase
(OAS) are synthesized as inactive
precursors (PKRi and OASi, respectively)
and are activated by dsRNA (PKRa and
OASa, respectively). Once activated,
these gene products shut down
translation. IFNs can also induce the
synthesis of gene products that arrest the
cell cycle (e.g. p21, an inhibitor of G1/S
phase-specific cyclin-dependent kinases),
thus blocking virus replication, or induce
a pro-apoptotic state (e.g. procaspases).
Finally, IFNs can induce the synthesis of
proteins that are involved in the
processing and presentation of virus
proteins to CD8+ cytotoxic T lymphocytes
(CTLs) (e.g. MHC class I proteins,
components of the proteasome and
peptide transporter molecules). Both
types of IFN also have profound
immunomodulatory effects that differ
between types, and these are discussed
in the text.

is generally assumed that the inducer is intracellular double-
stranded RNA (dsRNA), provided by the viral genome itself or
formed as a result of replication or convergent transcription of
viral genomes (reviewed in Jacobs & Langland, 1996). The
induction of IFN-β occurs primarily at the level of trans-
criptional initiation (see Fig. 2). The key induction event is the
redistribution from the cytoplasm to the nucleus of the
transcription factor NF-κB (Lenardo et al., 1989 ; Visvanathan &
Goodbourn, 1989). NF-κB plays a role in the transcriptional
induction of many immunomodulatory genes, including other
cytokines, MHC class I and cell adhesion molecules (reviewed
in Baldwin, 1996). NF-κB is normally held in a quiescent state
in the cytoplasm by association with an inhibitor molecule
called IκB. Upon receipt of a wide range of stress signals
[for example lipopolysaccharide, tumour necrosis factor
(TNF), interleukin (IL)-1 and viral dsRNA], IκB becomes
phosphorylated by a specific multicomponent IκB kinase and,
in turn, the phosphorylated IκB becomes ubiquitinated by an
E3 ubiquitin ligase. The ubiquitinated IκB is itself a target for
degradation by proteasomes and, once the inhibitory IκB is
destroyed, the associated NF-κB is freed from restraint and can
enter the nucleus and activate transcription (reviewed in Israel,
2000). Exposure to dsRNA activates NF-κB via the dsRNA-
dependent protein kinase R (PKR) (Maran et al., 1994 ; Yang et
al., 1995 ; see section 3), which activates the IKKβ subunit of
the multicomponent IκB kinase (Chu et al., 1999 ; Zamanian-
Daryoush et al., 2000). PKR can also phosphorylate IκB directly

(Kumar et al., 1994 ; Offermann et al., 1995), although the
biological role for this is unclear.

NF-κB binds to the IFN-β promoter as part of a multiprotein
transcription-promoting complex called the ‘enhanceasome’
(reviewed in Thanos, 1996), which also contains HMG-I}Y,
ATF-2 homodimers or ATF-2}c-Jun heterodimers (Du et al.,
1993) and a factor that binds to positive regulatory domain I
(PRD I). Although the latter would appear to be a member of
the interferon regulatory factor (IRF) family, its identity
remains the subject of debate, having been suggested to be
IRF-1 (Miyamoto et al., 1988 ; Fujita et al., 1989a ; Watanabe et
al., 1991 ; Reis et al., 1992 ; Matsuyama et al., 1993), ISGF3
(Yoneyama et al., 1996), IRF-3 (Sato et al., 1998b ; Schafer et al.,
1998 ; Weaver et al., 1998 ; Yoneyama et al., 1998) or a
combination of IRF-3 and IRF-7 (Wathelet et al., 1998). Since
many of the IRF proteins bind both PRD I and the closely
related IFN-stimulated response element (ISRE ; an element
that is found in genes that are transcriptionally responsive to
type I IFN – see section 2), there may be some functional
overlap in the properties of these proteins. One consequence
of this overlap may be to ensure that virus infections cannot
block IFN-β induction completely by inhibiting any single IRF
(see section 4).

IFN-α can also be induced by virus infection in fibroblastoid
cells, and the promoters of several IFN-α genes have been
studied in detail (reviewed in Pitha & Au, 1995). Unlike IFN-β,
the IFN-α promoters do not have an NF-κB site, but contain
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Fig. 2. Transcriptional induction of the IFN-β gene. Virus replication gives rise to dsRNA, which is able to activate PKR and
perhaps additional cellular kinases. PKR in turn activates the IκB kinase and indirectly leads to the activation of the
immunomodulatory transcription factor NF-κB. Together with ATF-2 and a member(s) of the IRF family, NF-κB assembles on
the IFN-β promoter with the help of several copies of the accessory factor HMG-I/Y to form a multifactorial complex called the
‘enhanceasome’. Components of the enhanceasome make contacts with factors that are part of the basal transcriptional
machinery and, by stabilizing interactions with this machinery and causing a local ‘ remodelling ’ of the chromatin, recruit RNA
polymerase II to the promoter to bring about transcription of the IFN-β gene. See text for details.

elements that are related to the PRD I- and ATF-2-binding
sites, as well as distinct elements. IFN-α genes are not able to
be induced in embryonic fibroblasts derived from mice lacking
both copies of the IFN-β gene, implying that fibroblasts
depend upon IFN receptor activation by IFN-β for IFN-α
production (Erlandsson et al., 1998). It is thought that IFN-β
works by inducing the synthesis of IRF-7, which, following
activation by virus infection, leads to stimulation of IFN-α
transcription (Au et al., 1998 ; Marie et al., 1998 ; Sato et al.,
1998a ; Yeow et al., 2000). IFN-α is also induced in leukocytes
by virus infection. The induction mechanism is poorly
characterized in the case of these cells, but is clearly distinct
from induction in fibroblasts, since IFN-β production is not
required (Erlandsson et al., 1998).

IFN-γ is produced by Th1 CD4+ helper T cells and by
nearly all CD8+ cells, as a result of transcriptional activation
induced by exposure to antigen-presenting cells (reviewed in
Young, 1996). In naive and memory CD4+ T cells, the IFN-γ

promoter is under the control of two distinct regulatory
elements (proximal and distal ; Aune et al., 1997). In contrast,
only the distal element is activated in CD8+ cells, leading to a
significantly weaker response than that seen in CD4+ cells. The
proximal element is activated by complexes containing c-Jun
and ATF-2, whilst the distal element is activated by GATA-3
and ATF-1 (Penix et al., 1996 ; Zhang et al., 1998a). The signal
transduction mechanisms involved in activating transcription
of the IFN-γ gene are poorly characterized, but involve the p38
and JNK2 mitogen-activated protein kinase (MAP kinase)
pathways (Rincon et al., 1998 ; Yang et al., 1998 ; Lu et al., 1999).
IFN-γ production in response to antigen stimulation is
enhanced markedly by IL-12 or IL-18, cytokines produced by
activated antigen-presenting cells (reviewed in Okamura et al.,
1998). Although neither IL-12 nor IL-18 alone can stimulate
IFN-γ production significantly in unstimulated T cells, together
these cytokines can stimulate IFN-γ production in an antigen-
independent manner (Tominaga et al., 2000). The molecular

CDED



S. Goodbourn, L. Didcock and R. E. RandallS. Goodbourn, L. Didcock and R. E. Randall

Fig. 3. Signalling pathways activated by IFN-α/β and IFN-γ. The biological activities of IFNs are initiated by binding to their
cognate receptors. This leads to the activation of receptor-associated tyrosine kinases, as discussed in the text. These kinases
phosphorylate members of the STAT family of transcription factors, which can enter the nucleus and, either on their own or in
combination with p48, bind to the promoters of target genes and bring about gene-specific transcriptional activation. See text
for details.

basis of this is unknown, but may involve activation of STAT4
by IL-12 and NF-κB by IL-18, and it may also involve an up-
regulation of the IL-18 receptor by IL-12 (Yoshimoto et al.,
1998). IFN-γ is also produced by activated NK cells in an
antigen-independent manner and this is also dependent on IL-
12 production by antigen-presenting cells and is stimulated by
IL-18 (Singh et al., 2000).

2. Signal transduction in response to IFNs

The biological activities of IFNs are initiated by the binding
of IFN-α}β and IFN-γ to their cognate receptors on the surface
of cells, which results in the activation of distinct but related
signalling pathways, known as the Jak}STAT pathways
(reviewed in Stark et al., 1998 ; summarized in Fig. 3). The
ultimate outcome of this signalling is the activation of
transcription of target genes that are normally expressed at
low levels or are quiescent. The upstream regulatory sequences
of most IFN-α}β-inducible genes contain a variation of the
consensus sequence [GAAAN(N)GAAA] called the ISRE,
whilst the upstream regulatory regions of IFN-γ-inducible

genes contain a unique element called the gamma activation
sequence (GAS), which contains the consensus sequence
TTNCNNNAA.

The IFN-α}β receptor is composed of two major subunits,
IFNAR1 and IFNAR2 (reviewed in Mogensen et al., 1999).
Prior to stimulation, the cytoplasmic domains of IFNAR1 and
IFNAR2 are respectively associated with the ‘ Janus« tyrosine
kinases Tyk2 (Colamonici et al., 1994) and Jak1 (Novick et al.,
1994). IFNAR2 is also associated with the ‘ signal transducer
and activator of transcription« (STAT) molecule STAT2 (Li et
al., 1997). On IFN-α}β binding, IFNAR1 and IFNAR2 associate,
facilitating the transphosphorylation and activation of Tyk2
and Jak1 (Novick et al., 1994). Tyk2 then phosphorylates the
tyrosine at position 466 (Tyr%'') on IFNAR1 (Colamonici et al.,
1994), creating a new docking site for STAT2 through the
latter’s SH2 domain (Yan et al., 1996). STAT2 is then
phosphorylated by Tyk2 at Tyr'*! and serves as a platform
(Leung et al., 1995 ; Qureshi et al., 1996) for the recruitment
of STAT1 (also through its SH2 domain), which is subse-
quently phosphorylated on Tyr(!" (Shuai et al., 1993). The
phosphorylated STAT1}STAT2 heterodimers thus formed
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dissociate from the receptor and are translocated to the nucleus
through an unknown mechanism, where they associate with
the DNA-binding protein p48 (Veals et al., 1992) to form a
heterotrimeric complex called ISGF3, which binds the ISRE of
IFN-α}β-responsive genes. p48 is a member of the IRF family
and is sometimes referred to as IRF-9 ; it should be stressed
that, like the IFN-β promoter element PRD I, the ISRE sequence
can also be bound by other members of the IRF family, notably
IRF-1 and IRF-2, and this may have profound biological
consequences (see below).

IFN-γ receptors are composed of at least two major
polypeptides, IFNGR1 and IFNGR2 (reviewed in Bach et al.,
1997). In unstimulated cells, IFNGR1 and IFNGR2 do not
pre-associate strongly with one another (Bach et al., 1996), but
their intracellular domains specifically associate with the
Janus kinases Jak1 and Jak2, respectively (Kotenko et al.,
1995 ; Sakatsume et al., 1995 ; Bach et al., 1996 ; Kaplan et al.,
1996). Binding of the dimeric IFN-γ to the receptor triggers
receptor dimerization, which brings Jak1 and Jak2 molecules on
adjacent receptor molecules into close proximity (Greenlund
et al., 1994, 1995 ; Igarashi et al., 1994 ; Bach et al., 1996) ; Jak2
is thus activated and in turn activates Jak1 by trans-
phosphorylation (Briscoe et al., 1996). The activated Jaks then
phosphorylate a tyrosine-containing sequence near the C
terminus of IFNGR1 (Tyr%%!–Tyr%%%), thereby forming paired
binding sites for STAT1 that interact through their SH2
domains (Greenlund et al., 1994, 1995 ; Igarashi et al., 1994) and
are phosphorylated at Tyr(!", near the C terminus (Shuai et al.,
1993, 1994 ; Greenlund et al., 1994 ; Heim et al., 1995). The
phosphorylated STAT1 proteins dissociate from the receptor
and form a homodimer, through SH2 domain–tyrosine
phosphate recognition, which translocates to the nucleus
through a poorly characterized mechanism (Sekimoto et al.,
1996). Active STAT1 homodimers, also called gamma-
activated factor (GAF), bind to specific GAS elements of IFN-
γ-inducible genes (reviewed by Stark et al., 1998) and stimulate
transcription. IFN-α}β can also induce the formation of STAT1
homodimers, albeit less efficiently than IFN-γ (Haque &
Williams, 1994), although the mechanism whereby STAT1
homodimers are activated by IFN-α}β remains obscure.

The transactivation function of STAT1 depends upon
phosphorylation of Ser(#( (Wen et al., 1995) by a kinase with
MAP-like specificity. The identity of this kinase remains
controversial, although it may differ between cell types. Thus,
p38 kinase has been shown to be important for Ser(#(

phosphorylation in response to IFN-α}β and IFN-γ in mouse
fibroblasts (Goh et al., 1999) but not in response to IFN-γ in
macrophages (Kovarik et al., 1999). Furthermore, the pro-
tein tyrosine kinase Pyk2 has recently been shown to be a
critical mediator of the Jak-dependent activation of Ser(#(

phosphorylation of STAT1 in IFN-γ, but not IFN-α}β,
signalling (Takaoka et al., 1999). It has also recently been
shown that PKRplays a role in Ser(#( phosphorylation (Ramana
et al., 2000), but this is unlikely to be direct. The role of Ser(#(

phosphorylation is to facilitate interaction of STAT1 with the
basal transcriptional machinery. Recent studies have revealed
important connections between STAT1 and the CREB-binding
protein (CBP)}p300 transcription factors. The CBP}p300
family of transcription factors potentiate the activity of several
groups of transcription factors (reviewed in Janknecht &
Hunter, 1996). Both the C- and N-terminal domains of STAT1
have been shown to bind CBP}p300 (Zhang et al., 1996).
STAT1 also interacts with the chromatin-associated protein
MCM5 in a Ser(#(-dependent manner (Zhang et al., 1998b) and
with Nmi, a protein that acts to enhance the association
between STAT1 and CBP}p300 (Zhu et al., 1999). Although
STAT2 does not contain a MAP kinase consensus site and is
not known to be serine-phosphorylated in response to IFN, it
also binds CBP}p300 and facilitates interaction with the basal
transcriptional machinery (Bhattacharya et al., 1996).

A second form of STAT1 (STAT1β) can be derived by
differential splicing. STAT1β contains the tyrosine at position
701 and is recruited to the receptor complex, becomes tyrosine-
phosphorylated and binds DNA. However, STAT1β differs
from the predominant form of STAT1 (STAT1α) by lacking the
C-terminal 38 amino acids that include Ser(#( and, thus, it
cannot activate transcription (Schindler et al., 1992 ; Shuai et al.,
1993). The function of STAT1β is not clear. Although it can
become incorporated into ISGF3 complexes that retain their
transcriptional activation potential as a result of STAT2
function (Muller et al., 1993), the consequences of a potential
STAT1α}STAT1β heterodimer have not been established, but
these might well down-regulate transcription.

Recently, several other proteins have been identified that
may also be required for IFN signalling. For example, the
tyrosine phosphatase SHP-2, which pre-associates with
IFNAR1, is phosphorylated in response to IFN-α}β and, in
transfection experiments, a dominant-negative form of SHP-2
inhibits the IFN-α}β-induced expression of a reporter gene
(David et al., 1996). IFN-α}β treatment also induces the
phosphorylation and activation of cytosolic phospholipase A2
(CPLA2), an event that requires Jak1 and the p38 MAP kinase
(Goh et al., 1999). The demonstration that CPLA2 inhibitors
can block the expression of ISRE-containing genes induced by
IFN-α}β implies that CPLA2 also plays a role in the trans-
activation of ISRE-containing genes (Hannigan & Williams,
1991 ; Flati et al., 1996).

As discussed above, other members of the IRF family can
bind ISRE sequences and our understanding of IFN-mediated
signal transduction is complicated by the fact that some of
these IRF proteins are inducible by IFNs. Thus, both IFN-α}β

and IFN-γ can induce IRF-1, which can then serve to sustain
expression of genes that contain ISREs. Indeed, IRF-1-
dependent gene expression in response to IFNs has been
observed in a number of cases (see for example Kimura
et al., 1994 ; Chatterjee-Kishore et al., 1998 ; Kano et al.,
1999 ; Salkowski et al., 1999 ; Karlsen et al., 2000). This can give
rise to complex patterns of gene expression whereby, for
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example, IFN-γ can induce the synthesis of genes that lack GAS
sites via the induction of IRF-1 (see for example Lechleitner et
al., 1998 ; Foss & Prydz, 1999 ; Piskurich et al., 1999).

In contrast to the mechanism of IFN signal transduction,
little is known about the mechanism of signal attenuation.
Several IRF proteins, including IRF-2 (Harada et al., 1989) and
the IFN-consensus sequence-binding protein (ICSBP, also
called IRF-8 ; Nelson et al., 1993), are known to bind ISREs and
negatively regulate expression, and may help to prevent
expression in the absence of IFN or down-regulate the induced
response. IFN-induced proteins play a major role in signal
attenuation, since protein synthesis inhibitors prolong the
transcription of IFN-induced genes (Friedman et al., 1984 ;
Larner et al., 1986). One group of proteins with the po-
tential to fulfil this role is the SOCS}JAB}SSI family, which
are inducible by IFN-γ and several other cytokines and bind to
and inhibit activated Jaks, leading to signal down-regulation
(Endo et al., 1997 ; Naka et al., 1997 ; Starr et al., 1997 ; Starr &
Hilton, 1999).

Activation by STAT1 is usually transient, as a result of
dephosphorylation by a tyrosine phosphatase (Igarashi et al.,
1993 ; Haque et al., 1995). However, it is not known whether
the phosphatase acts on phosphorylated STATs in the nucleus
or on phosphorylated Jaks or receptor subunits at the plasma
membrane. The tyrosine phosphatase SHP-1 has been shown
to be associated reversibly with IFNAR-1 after IFN-α stimu-
lation (David et al., 1995) and Jak1 and STAT1 phosphorylation
is increased significantly in macrophages isolated from mice
that lack SHP-1 activity compared with normal control
macrophages (Haque & Williams, 1998), suggesting that SHP-
1 may play a role in signal attenuation. In addition to down-
regulation by dephosphorylation, STAT1 is turned over by a
mechanism involving proteasome-mediated degradation, but
there is no evidence that this process is important in the
regulation of STAT1 function (Kim & Maniatis, 1996).

3. The antiviral response

The best-characterized IFN-inducible components of the
antiviral response are PKR and the 2«–5« oligoadenylate
synthetases, although it is clear that other factors may be
involved, especially molecules that regulate the cell cycle or
cell death and thereby limit the extent of virus replication. In
many cases, IFN-inducible enzymes are inactive until exposed
to virus infection, thus ensuring that uninfected cells do not
suffer undue trauma. It is thought that the virus co-factor that
activates these IFN-inducible enzymes is dsRNA (reviewed in
Jacobs & Langland, 1996).

(i) dsRNA-dependent protein kinase R (PKR). The IFN-inducible
PKR is a serine}threonine kinase with multiple functions in
control of transcription and translation (reviewed in Clemens
& Elia, 1997). The PKR protein has two well-characterized
domains, an N-terminal regulatory domain that contains the
dsRNA-binding site and a C-terminal catalytic domain that

contains all of the conserved motifs for protein kinase activity
(Meurs et al., 1990). PKR is normally inactive, but is activated
by binding to dsRNA or other polyanions (Meurs et al.,
1990 ; Katze et al., 1991 ; George et al., 1996), whereupon it
undergoes a conformational change that leads to the un-
masking of the catalytic domain. The active form of PKR is
postulated to be a dimer, with two PKR molecules binding one
molecule of dsRNA; the juxtaposed PKR molecules trans-
phosphorylate each other on several serines and threonines.
PKR activation is decreased when large amounts of dsRNA are
present, due to saturation of dsRNA-binding sites and a shift in
the equilibrium towards monomers. There are no sequence
requirements for the dsRNA, although some RNAs are more
potent activators than others. However, there are size
requirements, with at least 50 base pairs of duplex being
necessary for activation (reviewed in Robertson & Mathews,
1996).

Activated PKR has a number of important cell-regulatory
activities. Firstly, it phosphorylates the α subunit of the
eukaryotic translation initiation factor eIF2 and prevents the
recycling of initiation factors (Meurs et al., 1992 ; reviewed in
Clemens & Elia, 1997). In the initial step of translation, the
initiator Met-tRNA is recruited to the 40S ribosomal subunit
via an interaction with GTP-bound eIF2 (which consists of
three subunits, α, β and γ). This complex then interacts with
mRNA, other initiation factors and the large ribosomal subunit
to form a pre-initiation complex, with subsequent hydrolysis of
the GTP molecule bound to eIF2 and release of GDP-bound
eIF2. In order to participate in another round of translational
initiation, the GDP bound to eIF2 must be exchanged for GTP,
a reaction that is catalysed by the guanine exchange factor,
eIF2B. Phosphorylated eIF2α interacts strongly with eIF2B and
traps it such that it cannot mediate the recycling of eIF2
(Ramaiah et al., 1994 ; reviewed by Clemens & Elia, 1997). Since
eIF2B is present in limiting amounts, translation is inhibited.

PKR also plays a role in mediating signal transduction in
response to dsRNA and other ligands (reviewed in Williams,
1999). For example, the transcription factor NF-κB, which is
essential for mediating induction of the IFN-β gene, is activated
by PKR in response to dsRNA (see section 1). PKR has also
been proposed to influence the activity of the transcription
factors STAT1 (Wong et al., 1997 ; Ramana et al., 2000), IRF-1
(Kumar et al., 1997) and p53 (Cuddihy et al., 1999a, b),
although the details of the activation events remain to be
clarified. The elevated levels of PKR that would be found in a
cell exposed to IFN would cause an enhancement of these
signal transduction events, which may help to accelerate virus
clearance. For example, enhanced activation of NF-κB ac-
tivation would lead to increased cytokine, chemokine and
MHC class I presentation.

PKR also aids in the clearance of virus infection by
mediating apoptosis. It has been shown that dsRNA (and thus
virus infection) can trigger apoptosis directly (Der et al.,
1997 ; King & Goodbourn, 1998 ; Tanaka et al., 1998) and there
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is considerable evidence that this effect works through PKR
(Takizawa et al., 1996 ; Der et al., 1997 ; reviewed in Jagus
et al., 1999 ; Tan & Katze, 1999), although PKR-independent
mechanisms also operate for some viruses (Balachandran et al.,
2000). The downstream targets for PKR-mediated apoptosis
remain to be identified, but overexpression of PKR has been
shown to induce apoptosis through a Bcl2- and caspase-
dependent mechanism (Lee et al., 1997). Intriguingly, although
mice with a targetted knockout of the dsRNA-binding domain
of PKR are sensitive to virus-induced apoptosis (Yang et al.,
1995), mice with a targetted knockout of the PKR catalytic
domain are not (Abraham et al., 1999).

PKR also plays a role in mediating the apoptotic effects of
dsRNA in an indirect manner. In this case, effects on protein
synthesis are important (Srivastava et al., 1998 ; Gil et al., 1999),
as are effects on the transcription factor NF-κB (Gil et al., 1999).
Exposure of cells to dsRNA also enhances apoptosis by
inducing the synthesis of Fas (Takizawa et al., 1995 ;
Balachandran et al., 1998 ; Fujimoto et al., 1998) and Fas
receptor (Fujimoto et al., 1998) in a manner that depends upon
PKR (Balachandran et al., 1998). Finally, the apoptotic effects of
TNF on promonocytic U937 cells require p53 to ensure a
response to activated PKR (Yeung et al., 1996).

Although there is abundant evidence that PKR plays a
major role in regulating virus infection, PKR is not sufficient
to mediate the full antiviral response. Thus, mice with
homozygous disruptions of the PKR gene (Yang et al.,
1995 ; Abraham et al., 1999) still show resistance to virus
infection, although the wild-type but not the PKR-deficient
animals are protected to some extent by injection of dsRNA at
virus doses that are normally lethal (Yang et al., 1995).

(ii) The 2«–5« oligoadenylate synthetase system. 2«–5« oligo-
adenylate synthetases are a group of enzymes that are induced
by IFNs in mammalian cells and catalyse the synthesis from
ATP of oligomers (three to five units) of adenosine linked by
phosphodiester bonds in the unusual conformation of 2« to 5«
(2«5«A; Kerr & Brown, 1978). The 2«5«A molecules bind with
high affinity to endoribonuclease L (RNase L) and induce its
activation via dimerization. Activated RNase L catalyses the
cleavage of single-stranded RNA including mRNA, thereby
leading to inhibition of protein synthesis (reviewed in
Silverman, 1997). It has recently been demonstrated that
RNase L also cleaves 28S ribosomal RNA in a site-specific
manner, leading to ribosomal inactivation and thus trans-
lational inhibition (Iordanov et al., 2000). Since 2«5«A is highly
labile, the activation of RNase L depends upon locally activated
2«–5« oligoadenylate synthetase within the cell, thus ensuring
that virus transcripts are destroyed preferentially over cellular
mRNAs, since they are in the vicinity of the activator (viral
dsRNA; Nilsen & Baglioni, 1979).

The 2«–5« oligoadenylate synthetase}RNase L system has
been suggested to play a role in the antiviral effects of IFN-α}β

against vaccinia virus, reovirus and encephalomyocarditis virus

(reviewed in Silverman & Cirino, 1997) and antiviral effects of
IFN-α are indeed impaired in RNase L−/− mice (Zhou et al.,
1997). RNase L may also play a role in apoptosis, since RNase
L−/− mice show defects in apoptosis in several tissues (Zhou et
al., 1997) whilst activation of RNase L induces apoptosis (Diaz-
Guerra et al., 1997). Although the exact role of RNase L in
apoptosis is not clear, it seems likely that the 2«–5« oligo-
adenylate synthetase}RNase L system may contribute to the
antiviral activity of IFN by inducing apoptosis of infected cells
(Zhou et al., 1997 ; Castelli et al., 1998a, b).

(iii) Alternative antiviral pathways. The IFN-inducible Mx
proteins are highly conserved, large GTPases with homology
to dynamin and have been found in all vertebrate species
examined so far, including mammals, birds and fish (reviewed
in Staeheli et al., 1993 ; Arnheiter et al., 1995). Mx proteins
interfere with virus replication, probably by inhibiting the
trafficking or activity of virus polymerases (Stranden et al.,
1993), thereby impairing the growth of a wide range of RNA
viruses at the level of virus transcription and at other steps in
the virus life-cycle. The murine nuclear protein Mx1 has been
shown to suppress the growth of members of the Ortho-
myxoviridae (Staeheli et al., 1986, 1988 ; Haller et al., 1995). The
human cytoplasmic protein MxA inhibits the growth of
members of several RNA families, including the Ortho-
myxoviridae (Pavlovic et al., 1990, 1992 ; Frese et al., 1995,
1997), Paramyxoviridae (Schneider-Schaulies et al., 1994 ; Zhao
et al., 1996), Rhabdoviridae (Pavlovic et al., 1990), Bunyaviridae
(Frese et al., 1996 ; Kanerva et al., 1996) and Togaviridae (Landis
et al., 1998). Mutant forms of Mx proteins lacking the ability to
bind or hydrolyse GTP fail to suppress virus replication. Hefti
et al. (1999) have analysed the behaviour of transgenic mice
that constitutively express the human MxA gene in a mouse
background lacking the IFN-α}β receptor and have shown that
the MxA protein protects mice against Thogoto virus, La
Crosse virus and Semliki Forest virus.

Recent studies involving the generation of mice that are
triply deficient in RNase L, PKR and Mx1 indicate that there
are additional antiviral effects of IFNs (Zhou et al., 1999). Other
factors that clearly play a role in the IFN-induced antiviral
response are caspases (see below) and the dsRNA-dependent
adenosine deaminase (ADAR). The enzyme ADAR recog-
nizes dsRNA as a substrate and unwinds it as a result of
systematically replacing adenosines with inosine (Bass et al.,
1989 ; Polson & Bass, 1994 ; O’Connell et al., 1995 ; Patterson
et al., 1995). Since many viral RNAs go through a dsRNA-
based replicative intermediate, this has the effect of being
mutagenic, and there are several reports of genomic substi-
tutions consistent with this activity (Bass et al., 1989 ; Cattaneo,
1994 ; Casey & Gerin, 1995 ; Hajjar & Linial, 1995 ; Horikami &
Moyer, 1995 ; Polson et al., 1996). It has also been suggested
that an inosine-specific ribonuclease could act in concert with
ADAR to destroy modified viral RNAs (Scadden & Smith,
1997).
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(iv) Antiproliferative activities of IFNs. IFNs can inhibit cell
growth and thereby inhibit the replication of some viruses.
However, the sensitivity of cells to the antiproliferative effects
of IFNs is very cell-type dependent. For example, growth of
the Daudi B cell line is arrested completely by as little as 1
unit}ml IFN-α}β, whereas many cell types are largely un-
responsive at any dose tested. Because of the potential clinical
importance of the cytostatic properties of IFN, the negative
regulation of growth has been studied intensively and a
number of aspects of this process have been described. There
is evidence to support a role for PKR and RNase L in the
antiproliferative functions of IFNs. The amount of PKR can
vary according to the state of growth of mammalian cells in
culture and this appears to correlate with the level of eIF2α

phosphorylation (reviewed in Jaramillo et al., 1995), suggesting
that, even in the absence of viral dsRNA, PKR can exhibit
residual activity, presumably due to the presence of a cellular
activator. Additionally, overexpression of PKR is growth
suppressive and}or toxic in insect, mammalian and yeast cells
(Koromilas et al., 1992 ; Chong et al., 1992 ; Dever et al., 1993),
an effect which can also be shown to be due to eIF2α

phosphorylation. Overexpression of the 40 kDa form of 2«–5«
oligoadenylate synthetase has been shown to reduce growth
rates of transfected cells (Chebath et al., 1987 ; Rysiecki et al.,
1989 ; Coccia et al., 1990) and expression of a dominant-
negative mutant of RNase L in murine SVT2 cells inhibited the
antiproliferative effect of IFN on these cells (Hassel et al., 1993).

IFNs can also exert negative regulation of the cell cycle at
a more direct level. IFNs have been shown to up-regulate
specifically the levels of the cyclin-dependent kinase inhibitor
p21 (Chin et al., 1996 ; Subramaniam & Johnson, 1997 ;
Subramaniam et al., 1998), which plays a crucial role in
the progression from G

"
into S phase (reviewed in Harper et al.,

1993 ; Gartel et al., 1996). When p21 levels are elevated, cyclin-
dependent kinase activity is turned off and consequently the
phosphorylation of the retinoblastoma gene product (pRb) and
the related pocket proteins is suppressed (Sangfelt et al., 1999).
Since hypophosphorylated pRb and the related pocket proteins
interact strongly with the E2F family of transcription factors,
there is a consequent increase in the pRB-}pocket protein-
bound E2F complexes (Iwase et al., 1997 ; Kirch et al.,
1997 ; Furukawa et al., 1999). The significance of this is that free
E2F is required for the transcription of many genes that are
needed for transition from G

"
to S phase and thus the elevation

of pRB-}pocket protein-bound E2F complexes results in a
block to the cell cycle.

Another major IFN-inducible activity that can act as a
potent repressor of the cell cycle is the p202 gene product and
related members of its ‘200 family ’ (Kingsmore et al.,
1989 ; Lembo et al., 1995 ; Gutterman & Choubey, 1999). The
p202 product can bind both hypophosphorylated pRb
(Choubey & Lengyel, 1995) and members of the E2F
transcription family (Choubey et al., 1996 ; Choubey &
Gutterman, 1997) as well as complexes containing both. The

complex between E2F and p202 is unable to bind DNA and
hence there is a loss of stimulation of transcription of genes
important for the G

"
–S transition. Since the p202 protein also

contains a transcriptional repression domain (Johnstone et al.,
1998), any recruitment to DNA would also shut down gene
expression. Finally, IFNs have been shown recently to down-
regulate directly the transcription of c-myc, an essential gene
product that is required to drive cell cycle progression (Ramana
et al., 2000).

(v) Control of apoptosis. IFNs, like other cytokines, can have
either pro- or anti-apoptotic activities depending on various
factors including the state of cell differentiation. For example,
IFN-γ induces apoptosis of murine pre-B cells but inhibits
apoptosis of chronic lymphocytic leukaemia cells (Buschle et
al., 1993 ; Grawunder et al., 1993 ; Rojas et al., 1996). However,
when a cell is infected with a virus, a major function of IFN is
to ensure that the cell is triggered to undergo apoptosis
(Tanaka et al., 1998). IFN appears to do this by inducing a pro-
apoptotic state in uninfected cells (reviewed in Schindler,
1998). As discussed above, IFN-induction of PKR and the
2«5«A system plays a major role in the apoptosis response.
However, IFN has also been demonstrated to induce caspase 1
(Chin et al., 1997), caspase 3 (Subramaniam et al., 1998) and
caspase 8 (Balachandran et al., 2000) and thus to enhance the
sensitivity of cells to virus-induced apoptosis. IFN-γ has also
been shown to influence the sensitivity to apoptosis by
inducing both Fas and Fas ligand (Xu et al., 1998).

(vi) Immunomodulatory functions of IFNs. Nearly all phases of
innate and adaptive immune responses are affected profoundly
by IFNs. All IFN family members share the ability to enhance
the expression of MHC class I proteins and thereby to promote
CD8+ T cell responses (reviewed in Boehm et al., 1997). In
contrast, only IFN-γ is capable of inducing the expression of
MHC class II proteins, thus promoting CD4+ T cell responses.
IFNs play an important role in antigen processing by regulating
the expression of many proteins involved in the generation of
antigenic peptides to be displayed in association with MHC
class I proteins. IFN-γ modifies the activity of proteasomes
(reviewed in York & Rock, 1996) such that they enhance the
generation of peptides that bind class I MHC proteins. In
unstimulated cells, the proteasome contains the three en-
zymatic subunits x, y and z. However, following IFN-γ
treatment of cells, the transcription of the x, y and z genes is
decreased and the transcription of three additional genes
encoding enzymatic proteasome subunits LMP2, LMP7 and
MECL1 is increased. This results in the formation of
proteasomes with different substrate specificities, thereby
altering the types of peptide produced and subsequently
presented to the immune system. IFN-γ also increases the
expression of TAP1 and TAP2, which are involved in the
transfer of peptides (generated by the proteasome) from the
cytoplasm into the endoplasmic reticulum to bind nascent
MHC class I proteins (Trowsdale et al., 1990 ; Epperson et al.,
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1992). Thus, IFNs enhance immunogenicity by increasing the
repertoire and quantity of peptides displayed to CD8+ T cells.

IFN-γ also plays an important role in regulating the balance
between Th1 and Th2 cells. Firstly, it increases the synthesis of
IL-12 in antigen-presenting cells (Dighe et al., 1995 ; Flesch et
al., 1995 ; Murphy et al., 1995). IL-12 is the primary effector
that drives developing CD4+ T cells to become Th1 cells
(Hsieh et al., 1993 ; Trinchieri, 1995). Secondly, IFN-γ prevents
the development of Th2 cells by inhibiting the production of
IL-4, which is required for Th2 cell formation (Gajewski &
Fitch, 1988 ; Szabo et al., 1995). IFN-γ also plays an important
role in macrophage activation (Adams & Hamilton, 1984 ;
Buchmeier & Schreiber, 1985 ; Dalton et al., 1993 ; Huang
et al., 1993). Once activated, macrophages use a variety of IFN-
γ-induced mechanisms to kill microbial targets. The most
important of these mechanisms involve the production of
reactive oxygen and reactive nitrogen intermediates. Reactive
oxygen intermediates are generated as products of the enzyme
NADPH oxidase, the assembly of which is induced by IFN-γ.
Reactive nitrogen intermediates, especially nitric oxide (NO),
are generated in murine macrophages as a result of the IFN-γ-
dependent transcription of the gene encoding the inducible
form of nitric oxide synthase (iNOS), which catalyses NO
formation (MacMicking et al., 1997).

In addition to affecting humoral immunity indirectly by
regulating the development of specific T helper cell subsets,
IFNs can have direct effects on B cells by regulating
development and proliferation, immunoglobulin (Ig) secretion
and Ig heavy-chain switching. Since different Ig isotypes
promote distinct effector functions in the host, IFNs can
facilitate interactions between the humoral and cellular effector
limbs of the immune response and increase the host defence
against certain bacteria and viruses by selectively enhancing
the production of certain Ig isotypes while inhibiting the
production of others (Snapper & Paul, 1987 ; Snapper et al.,
1988, 1992).

A major immunomodulatory function of IFN-α}β is to
enhance the cytotoxicity of NK cells (reviewed in Reiter,
1993 ; Biron et al., 1999) by up-regulating the levels of
perforins (Mori et al., 1998 ; Kaser et al., 1999). IFN-α}β also
acts to stimulate the proliferation of NK cells to a limited
degree, apparently via the induction of IL-15 from monocytes}
macrophages (Ogasawara et al., 1998 ; Fawaz et al., 1999 ;
Gosselin et al., 1999 ; Sprent et al., 1999). NK cells also
synthesize and secrete IFN-γ in response to a combination of
IL-12 and IL-15, which are released from infected monocytes}
macrophages (Doherty et al., 1996 ; Fehniger et al., 1999).
However, IFN-α}β blocks the production of IL-12 by infected
monocytes (reviewed in Biron et al., 1999) and thus prevents
NK cells from producing IFN-γ. The biological reasons, if any,
behind this are unclear. Finally, IFN-α}βs also play a role in
stimulating the adaptive responses ; IFN-induced IL-15 can
stimulate the division of memory T cells (Tough et al., 1996 ;
Zhang et al., 1998 c ; reviewed in Tough et al., 1999 ; Sprent et

al., 1999), whilst IFN-α}β appears to be able to promote the
survival of activated T cells directly (Marrack et al., 1999).

B. Virus countermeasures to the IFN
response
4. Inhibition of IFN production

Viruses vary considerably in their ability to induce IFN.
This may simply reflect the amounts of dsRNA produced
during their replication cycles (in general, DNA viruses
produce less dsRNA than RNA viruses and are therefore less
potent inducers of IFN; reviewed in Jacobs & Langland, 1996)
or it may reflect the fact that many viruses produce dsRNA-
binding proteins as part of their life-cycle. The sequestration of
dsRNA could inhibit the induction of IFN-α}β and might also
act to minimize the dsRNA-dependent activation of antiviral
gene products like PKR, 2«–5« oligoadenylate synthetase and
ADAR, as well as dsRNA-dependent apoptosis. For example,
the reovirus major outer capsid protein σ3 is a dsRNA-binding
protein (Lloyd& Shatkin, 1992 ; Yue& Shatkin, 1997 ; reviewed
in Jacobs & Langland, 1998), as is the σA protein of avian
reovirus (Martinez-Costas et al., 2000). Reovirus strains vary
significantly in their ability to induce IFN-α}β (reviewed in
Samuel, 1998) ; although this has not yet been shown to be a
function of variation in the σ3 protein, it is interesting to note
that strain differences in IFN sensitivity have been linked to
differences in dsRNA affinity of the σ3 protein (Bergeron et al.,
1998). The multifunctional NS1 protein of influenza virus (Lu
et al., 1995), the E3L protein of vaccinia virus (Chang et al.,
1992) and products of the NSP3 gene of porcine rotaviruses
(Langland et al., 1994) also bind dsRNA and a number of other
viruses that have been reported to block IFN production at the
transcriptional level may also do so by sequestering dsRNA
[e.g. the core antigen of hepatitis B virus (HBV) ; Twu &
Schloemer, 1989 ; Whitten et al., 1991]. The sequestration of
dsRNA by viral proteins might have a wider role in protecting
the virus from antiviral mechanisms ; dsRNA-activated PKR
can activate NF-κB and induce the synthesis of immuno-
modulatory genes in addition to IFN-α}β.

Since the activation of NF-κB by infection is a key trigger
to inducing IFN-α}β transcription and other immune responses,
it would perhaps not be surprising to find that many viruses
encoded inhibitors of NF-κB activation or function. Indeed,
African swine fever virus (ASFV) encodes a homologue of IκB
that inhibits the activity of NF-κB (Powell et al., 1996 ; Revilla
et al., 1998). However, it is well established that NF-κB, as well
as inducing proinflammatory cytokines, also induces anti-
apoptotic genes (Liu et al., 1996 ; Wu et al., 1996 ; Wang et al.,
1996 ; Van Antwerp et al., 1996 ; reviewed in Van Antwerp et
al., 1998 ; Foo & Nolan, 1999) and any virus that blocks NF-κB
activation may leave itself susceptible to enhanced induction of
apoptosis. Interestingly, ASFV infections are indeed charac-
terized by a significant degree of apoptosis (Oura et al., 1998).
The increased risk of apoptosis associated with inhibition of
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NF-κB may be circumvented by viral gene products that act to
block apoptosis ; such gene products are widespread (reviewed
in Cuff & Ruby, 1996 ; Gillet & Brun, 1996).

Another major strategy for blocking IFN-α}β production
would be to target the activities of the IRF transcription factors
that bind to the PRD I region of the IFN-β promoter.
Intriguingly, the E6 protein of human papillomavirus type 16
(HPV-16) binds IRF-3 and can inhibit its virus-induced
transcriptional activation function (Ronco et al., 1998). How-
ever, induction of IFN-β is not blocked completely by the E6
protein, suggesting that other cellular factors can substitute
functionally for IRF-3, and indeed, as discussed above, there are
several lines of evidence consistent with this hypothesis. The
potential substitutes for IRF-3 include IRF-1 (Miyamoto et al.,
1988 ; Fujita et al., 1989a ; Watanabe et al., 1991 ; Reis et al.,
1992 ; Matsuyama et al., 1993) and ISGF3 (Yoneyama et al.,
1996), but these factors can themselves be targetted by virus
functions. For example, IRF-1 is targetted by the K9 ORF gene
product of human herpesvirus-8 (HHV-8) (Zimring et al.,
1998), whilst the E7 protein of HPV-16 interacts with the p48
subunit of ISGF3 and prevents binding to DNA (Barnard &
McMillan, 1999). Perhaps the plethora of factors that can bind
to the PRD I region of the IFN-β promoter reflects a need of the
cell to be able to circumvent virus blockades.

In addition to specific transcription factor blocks, viruses
may inhibit the production of IFN by generally down-
regulating host mRNA production or protein synthesis, and
there is some evidence that these apparently non-specific
effects can affect virus pathogenicity. For example, mutation in
the gene encoding the matrix M protein of vesicular stomatitis
virus (which in wild-type virus causes a general inhibition of
host-cell transcription) leads to an attenuated virus with
efficient IFN-β-inducing properties (Ferran & Lucas-Lenard,
1997). Similarly, the foot-and-mouth disease virus L proteinase
gene encodes a protein that shuts off host-cell protein synthesis
and mutation of this gene is sufficient to generate an attenuated
strain that induces elevated levels of IFN-α}β (Chinsangaram et
al., 1999).

Viruses may also have more subtle and indirect methods for
reducing the level of IFN produced. For example, Epstein–Barr
virus (EBV) produces a homologue of IL-10 (Hsu et al., 1990).
Normally, IL-10 is produced by the Th2 subset of T helper cells
and one of its biological functions is to inhibit the ability of
monocytes and macrophages to activate Th1 cells by down-
regulating the expression of class II MHC molecules. Activated
Th1 cells produce a number of cytokines, including IFN-γ, that
are critical for the induction of classical cell-mediated immune
responses, including cytotoxic T lymphocytes. It has therefore
been proposed that EBV produces the homologue of IL-10 in
order to induce an inappropriate and less-effective immune
response against the virus (Bejarano & Masucci, 1998).
Similarly, human herpesvirus-6 may up-regulate IL-10, thereby
causing immunodysregulation by causing a shift from a Th1 to
a Th2 cytokine profile (Arena et al., 1999).

5. Inhibition of IFN signalling

There are clear advantages to viruses in having the ability
to block IFN signalling. Since there are components in common
between signalling pathways, it is possible for a virus to block
IFN-α}β or IFN-γ signalling or both. Using such strategies, not
only would the induction of cellular antiviral enzymes, such as
PKR, 2«–5« oligoadenylate synthetase and Mx, be inhibited but
there would also be no up-regulation of class I MHC molecules
within infected cells, making them poorer targets for cytotoxic
T cells. Furthermore, virus-infected cells would be resistant to
the actions of IFNs regardless of whether the IFNs were
produced by infected cells or by activated leukocytes.

Blocking the IFN signalling pathways could occur at several
levels and there is accumulating evidence that viruses can block
at most, if not all, stages (Table 1). Several poxviruses have
been shown to encode soluble IFN-receptor homologues that
bind and sequester IFNs, thereby preventing their biological
activity. For example, functional IFN-γ receptors are secreted
by cells infected with rabbit myxoma virus, ectromelia virus,
cowpox virus, camelpox virus and vaccinia virus (Upton et al.,
1992 ; Mossman et al., 1995 ; Alcami & Smith, 1995). Vaccinia
virus and most other orthopoxviruses also encode soluble IFN-
α}β receptor homologues (Symons et al., 1995 ; Colamonici et
al., 1995). It appears that the vIFN-α}β receptor of vaccinia
virus can also bind to the surface of cells and inhibit IFN
activity. Intriguingly, highly attenuated strains of vaccinia
virus do not secrete the IFN-α}β receptor, consistent with its
importance in virus pathogenesis. Interestingly, in terms of
virus host range, both the IFN-α}β and IFN-γ receptor
homologues secreted by poxviruses often have a broad species
specificity, unlike their cellular counterparts.

Human cytomegalovirus (HCMV) has been shown to
disrupt IFN signalling by decreasing the levels of Jak1 and p48
by a mechanism involving the proteasome (Miller et al., 1998,
1999), whereas the T antigen of murine polyomavirus (MPyV)
binds to Jak1 thereby blocking the activation of the IFN-α}β

and IFN-γ signalling pathways (Weihua et al., 1998). The STAT
and p48 proteins that form part of IFN-inducible transcription
complexes are targets for inhibition by several viruses. The V
protein of the paramyxovirus simian virus 5 (SV5) targets
STAT1 for proteasome-mediated degradation (Didcock et al.,
1999b), thereby preventing the formation of ISGF3 and GAF
complexes ; indeed, at least part of the host range of SV5
appears to be determined by the ability to mediate STAT1
degradation (Didcock et al., 1999a). Surprisingly, whilst mumps
virus also probably targets STAT1 for degradation (Yokosawa
et al., 1998), human parainfluenza virus 2 (hPIV2) (a virus very
closely related to SV5 and mumps) targets STAT2 (Young et
al., 2000). As a consequence, whilst SV5 and mumps virus
block both IFN-α}β and IFN-γ signalling, hPIV2 blocks only
IFN-α}β signalling. Sendai virus (Didcock et al., 1999b ; Yokoo
et al., 1999) and hPIV3 also block IFN-α}β and IFN-γ signalling,
although there was no evidence with these viruses that either
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Table 1. Virus inhibition of IFN signalling and IFN-induced transcriptional responses

Virus Mechanism of action/inhibition

i. Inhibition of IFN binding to cognate receptors
Poxviruses (many) Soluble IFN-α}β receptor
Poxviruses (many) Soluble IFN-γ receptor

ii. Inhibition of Jak/STAT pathway
Adenovirus E1A decreases the levels of STAT1 and p48 ; sequesters the

transcriptional co-activator, CBP}p300, which binds STAT1
and STAT2; interacts directly with STAT1

Ebola virus Blocks IFN-α}β and IFN-γ signalling, mechanism unknown
Epstein–Barr virus EBNA-2 blocks IFN signal transduction, mechanism unknown
Hepatitis C virus Blocks IFN-α}β and IFN-γ signalling, mechanism unknown
Human cytomegalovirus Reduces levels of Jak1 and p48
Human parainfluenza virus type 2 Blocks IFN-α}β signalling by targetting STAT2 for degradation
Human parainfluenza virus type 3
and Sendai virus

Block IFN-α}β and IFN-γ signalling by blocking STAT1
phosphorylation

Human papillomavirus type 16 E7 protein binds to p48 and blocks IFN-α}β signalling
Murine polyoma virus T antigen binds to and inactivates Jak1
Simian virus 5 (and mumps virus ?) V protein blocks IFN-α}β and IFN-γ signalling by targetting

STAT1 for proteasome-mediated degradation
iii. Miscellaneous
Hepatitis B virus Capsid protein specifically inhibits MxA gene expression,

mechanism unknown
Human herpesvirus-8 Virus IRF homologue blocks transcriptional responses to IFN-

α}β and IFN-γ

STAT1 or STAT2 was specifically degraded. These viruses
seem to prevent appropriate phosphorylation of STAT1
(Young et al., 2000 ; Komatsu et al., 2000). Interestingly,
whereas SV5 utilizes the V protein to block IFN signalling,
Sendai virus has been shown to use the C protein (Garcin et al.,
1999 ; Gotoh et al., 1999 ; Komatsu et al., 2000). In contrast,
respiratory syncytial virus (another paramyxovirus) does not
inhibit IFN signalling, although it clearly has some un-
characterized mechanism for circumventing the IFN response
(Young et al., 2000). The adenovirus E1A protein can disrupt
transcriptional responses to IFN-α}β and IFN-γ by decreasing
the levels of STAT1 and p48 (Leonard & Sen, 1996), by
sequestering the transcriptional co-activator CBP}p300, which
binds STAT1 and STAT2 and is involved in transcription
responses mediated by these proteins (Bhattacharya et al.,
1996 ; Zhang et al., 1996), and by interacting directly with
STAT1 (Look et al., 1998). Furthermore, the multifunctional E7
protein of HPV-16 interacts directly with p48, preventing the
formation of ISGF3 and thus the activation of IFN-α}β-
inducible genes (Barnard & McMillan, 1999).

HHV-8 encodes a homologue of the IRF family that
represses transcriptional responses to IFN-α}β and IFN-γ ; in
this case, the inhibition does not appear to act at the level of
IFN signalling, but rather inhibits the function of the IFN-
inducible product IRF-1 (Zimring et al., 1998), thus trans-
criptional responses to IFN cannot be sustained. It has been
reported that EBNA2 of EBV, which acts as a virus and cellular

transcription factor, also inhibits IFN-α}β signalling, by an
unknown mechanism that does not prevent the formation of
ISGF3 complexes (Kanda et al., 1992). Ebola virus (Harcourt et
al., 1998) and hepatitis C virus (HCV) (Heim et al., 1999) also
block transcriptional responses to IFN-α}β and IFN-γ, although
the cellular target(s) for inhibition and the viral proteins
responsible have yet to be identified in these cases. It has also
been reported recently that the capsid protein of HBV inhibits
IFN-induction of the MxA gene (Rosmurduc et al., 1999).

Although blocking IFN signalling would seem to be of
limited value to viruses in cells that had already been exposed
to IFN before infection (such cells would have an established
antiviral state), there is some evidence that it can still be
advantageous to be able to down-regulate IFN responses. For
example, although SV5 cannot initially replicate efficiently in
cells that have entered an antiviral state, the ability of the
virion-associated V protein to induce STAT1 degradation
leads to an eventual decay of the antiviral state and subsequent
virus replication (Didcock et al., 1999b). Viral proteins that
require synthesis after infection might also be able eventually
to inactivate an established antiviral state and permit rep-
lication, although it should be stressed that the delay in
replication induced by IFN exposure would buy time for the
host to mount an acquired immune response to help to resolve
the infection.

Given that the immune response has co-evolved with
viruses and that blocking IFN signalling seems an obvious
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Table 2. Virus inhibition of IFN-induced antiviral enzymes

Virus Mechanism of action/inhibition

i. PKR
Adenovirus Produces VA RNA that binds to but fails to activate PKR
Baculovirus PK2 binds eIF2α kinases, including PKR, and blocks their

activities
Epstein–Barr virus Produces EBER RNA that binds to but fails to activate PKR
Hepatitis C virus NS5A binds to and inhibits PKR; E2 also interacts with PKR

and may inhibit its activity
Herpes simplex virus ICP 34.5 redirects protein phosphatase 1 to dephosphorylate

(re-activate) elF2α ; U
S
11 blocks PKR activity

Human immunodeficiency virus Down-regulates PKR by unknown mechanism; Tat and short
Tat-responsive region RNA inhibit PKR

Influenza virus NS1 binds dsRNA and PKR to inhibit its activity. Influenza
virus also induces cellular inhibitor of PKR (p58IPK)

Poliovirus Induces the degradation of PKR
Poxviruses (many) Example : vaccinia virus E3L binds dsRNA and PKR; K3L binds

PKR
Reovirus σ3 binds dsRNA and thus inhibits PKR (and 2«–5«

oligoadenylate synthetase)
Rotavirus NSP3 binds dsRNA and thus inhibits PKR (and 2«–5«

oligoadenylate synthetase)

ii. 2«–5« Oligoadenylate synthetase/RNase L system
Various viruses Produce proteins that sequester dsRNA (above)
Encephalomyocarditis virus Induces RNase L inhibitor (RLI) that antagonizes 2«5«A binding

to RNase L
Herpes simplex virus 2«5«A derivatives are synthesized that behave as 2«5«A

antagonists
Human immunodeficiency virus Induces RNase L inhibitor (RLI) that antagonizes 2«5«A binding

to RNase L

strategy, it would be surprising if the immune system had not
evolved a mechanism(s) for recognizing and eliminating cells in
which IFN signalling has been blocked. Alternatively, the cell
itself may have some compensatory strategy for inducing an
antiviral response in cells in which the IFN signal-transduction
pathway is blocked. Indeed, this may be an important function
of IRF-1, which can bind to and activate many of the promoters
normally activated by IFN-α}β (Pine, 1992 ; Henderson et al.,
1997 ; Nguyen et al., 1997). IRF-1 levels can be raised by
exposure of cells to a number of cytokines whose levels are up-
regulated during infection, such as TNFα, IL-1 and IL-6 (Fujita
et al., 1989b ; Harroch et al., 1994), and these potential
alternative pathways to antiviral gene activation may be
important survival mechanisms in the face of a blockade of IFN
signalling.

6. Inhibition of IFN-induced antiviral enzymes

Many viruses encode factors that down-regulate the
activity of IFN-induced antiviral enzymes such as PKR and
2«–5« oligoadenylate synthetase ; our current knowledge of
these factors is summarized in Table 2 and is discussed below.

(i) PKR. The importance of PKR in the induction of an antiviral
state can be inferred from the wide variety of mechanisms that
are employed by viruses to inhibit its activity (reviewed in
Gale & Katze, 1998). As discussed above, a number of viruses
encode dsRNA-binding proteins that act to minimize NF-κB
activation, IFN induction and apoptosis and these proteins
would also inhibit PKR. Interestingly, the dsRNA-binding
proteins NS1 (Tan & Katze, 1998) and E3L (Sharp et al., 1998)
also bind directly to PKR and inhibit its function, and this is
also presumably true of the OV20.0L gene product of orf virus,
which shares 33% homology with E3L (Haig et al., 1998).
Although the NS1 protein of influenza virus is critical for its
ability to overcome the IFN response (Garcia-Sastre et al.,
1998 ; Hatada et al., 1999), influenza virus has also been
reported to induce the activation of a cellular inhibitor of PKR
termed p58IPK (Lee et al., 1990, 1992, 1994 ; Melville et al.,
1997). NS1 probably also inhibits the IFN response indirectly
(as discussed above) by being involved in the virus-induced
shut-off of host-cell protein synthesis. Thus, NS1 regulates
nuclear export of cellular mRNA (Fortes et al., 1994 ; Qiu &
Krug, 1994) and affects pre-mRNA maturation by inhibiting
splicing (Fortes et al., 1994 ; Lu et al., 1994) and poly-
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adenylation-site cleavage (Chen et al., 1999 ; Shimizu et al.,
1999).

In addition to binding dsRNA, viral gene products can
inhibit PKR in other ways. Poliovirus induces the degradation
of PKR (Black et al., 1989, 1993), HCV encodes the non-
structural protein NS5A, which binds PKR directly, thus
blocking its activity (Gale et al., 1997), whilst the baculovirus
PK2 protein also binds PKR and inhibits its activity (Dever
et al., 1998). Furthermore, the E2 protein of HCV contains
sequences identical to the phosphorylation sites on PKR and
eIF2α and its interaction with PKR may also contribute to the
ability of HCV to circumvent the IFN response (Taylor et al.,
1999). The K3L gene product of vaccinia virus has structural
similarity to the N terminus of eIF2α and binds tightly to PKR,
preventing autophosphorylation and hence activation of PKR
and the subsequent phosphorylation of eIF2α (Davies et al.,
1992, 1993 ; Carroll et al., 1993).

A more indirect method of overcoming the action of PKR
is illustrated by the γ

"
ICP34.5 protein encoded by herpes

simplex virus (HSV). ICP34.5 interacts with cellular protein
phosphatase 1α (PP1), redirecting it to dephosphorylate, and
hence reactivate, eIF2α (He et al., 1997). A virus deleted in
ICP34.5 is attenuated in normal mice but exhibits wild-type
replication and virulence in PKR null mice, thereby dem-
onstrating formally the importance of blocking the effects of
PKR for HSV pathogenicity (Leib et al., 2000). The l14L protein
of ASFV is a homologue of HSV ICP34.5 that contains the
sequence thought to be important in its binding to PP1.
However, l14L is found predominantly in the nuclei of infected
cells and it is not yet clear whether it has a role in circumventing
PKR activity (Goatley et al., 1999). Interestingly, HSV also
encodes U

S
11 (a γ

#
protein), which, when expressed in mutants

from an early promoter, can compensate for mutations in
ICP34.5 by inhibiting PKR activity. Since U

S
11 is an abundant

tegument protein brought into the cells upon infection, it may
act early to block phosphorylation of eIF2α. However, it
appears not to be as important as ICP34.5 in preventing PKR-
induced switch-off of HSV protein synthesis, and the exact role
of U

S
11 in the life-cycle of HSV has yet to be resolved (Mohr

& Gluzman, 1996 ; Cassady et al., 1998).
Some viruses produce abundant short RNA molecules that

inhibit PKR (reviewed in Robertson & Mathews, 1996). The
adenovirus VAI transcript is an RNA molecule that can form a
highly ordered secondary structure that binds avidly to the
dsRNA-binding site on PKR and acts as a competitive
inhibitor ; the molecule is thought to be too short (160
nucleotides) to permit two molecules of PKR to juxtapose and
transactivate (reviewed in Mathews, 1993, 1995). EBV also
encodes two small RNAs, EBER-1 and EBER-2, that may be
analogous to the VA RNAs of adenovirus. Thus, EBER-1 and
possibly also EBER-2 can interfere with PKR activity (Sharp et
al., 1993). Furthermore, EBER RNAs can partially complement
VA-negative mutants of adenovirus (Bhat & Thimmappaya,
1985). Human immunodeficiency virus type 1 (HIV-1) also

produces a short Tat-responsive region (HIV-TAR) RNA that
inhibits PKR activity (Gunnery et al., 1990). However, HIV-1
also down-regulates PKR activity by an unknown mechanism
(Roy et al., 1990) and the Tat protein, as well as being an
activator of virus transcription, also interacts with and inhibits
PKR (McMillan et al., 1995 ; Brand et al., 1997) by both RNA-
dependent and RNA-independent mechanisms (Cai et al.,
2000).

(ii) The 2«–5« oligoadenylate synthetase/RNase L system. Since
dsRNA is required to activate 2«–5« oligoadenylate synthetase,
virus proteins that sequester dsRNA, e.g. the E3L gene product
of vaccinia virus (Rivas et al., 1998), inhibit both PKR and the
2«–5« oligoadenylate synthetase}RNase L system. Several
viruses also appear to have evolved strategies that specifically
counteract the antiviral activity of the latter pathway. For
example, during HSV type 1 and type 2 infection, 2«5«A
derivatives are synthesized that behave as 2«5«A antagonists,
thereby inhibiting the activation of RNase L (Cayley et al.,
1984). Viruses such as HIV-1 (Martinand et al., 1999) and
encephalomyocarditis virus (Cayley et al., 1982 ; Martinand et
al., 1998) down-regulate RNase L activity by inducing the
expression of the RNase L inhibitor (RLI), which antagonises
2«5«A binding to RNase L and hence prevents its activation.

Surprisingly, a number of the small RNAs produced by
viruses that inhibit PKR, including HIV-TAR, adenovirus VAI
and EBV EBER-1, appear to activate 2«–5« oligoadenylate
synthetase (Desai et al., 1995 ; Mordechai et al., 1995 ; Sharp et
al., 1999), although the biological reasons for this are unclear.

Conclusion
The study of how viruses interact with the IFN system has

told us much about virus pathogenesis and about the IFN
system itself. Future studies on the molecular mechanisms that
viruses have for circumventing the IFN response are likely to
produce new and unsuspected insights into virus–host
relationships. For example, given that viruses have co-evolved
with the IFN system, it is possible that viruses have evolved
subtle ways of exploiting the IFN response. In this context, it
is intriguing to note that the IFN-α}β-inducible transcription
factor IRF-7 may play a role in altering the pattern of latency
in EBV infections (Zhang & Pagano, 2000), whilst HHV-8 can
be induced from latency by IFN-γ (Chang et al., 2000).

The ability of viruses to block the IFN response may have
consequences in terms of the chronic diseases caused by
viruses and their treatments. Thus, IFN may be unsuccessful in
the treatment of chronic virus infections because the viruses
have mechanisms for circumventing the IFN response. For
example, it has been suggested that IFN is ineffective as a
treatment of some hepatitis C patients because the virus blocks
PKR activity (Gale & Katze, 1998).

By understanding the molecular mechanisms by which
viruses circumvent the IFN response, it may be possible to
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identify novel antiviral drugs that work by preventing viruses
from blocking specific cellular activities. Such drugs may be
particularly useful in treating chronic virus-induced diseases
such as persistent hepatitis B and C infections. In addition, it
may be possible to generate attenuated vaccines by altering
specifically the virus gene(s) that is responsible for virus
inhibition of IFN function. We anticipate that research in the
area of IFN–virus interactions will yield a wealth of information
that has direct application to the control of virus infections.

We thank Peter King and Paula Barnard for stimulating discussions
and The Wellcome Trust for their support.
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