National CFIDS Foundation – Rapid Communication:
Could a Chernobyl therapy (Stimol/citrulline malate) for radiation exposure find merit in the medical
management of CFIDS/ME?

By National CFIDS Foundation Medical Committee
June 17, 2019 - Copyright 2019

The National CFIDS Foundation’s core CFIDS/ME cohort consists of patients with internal radiation
exposure to alpha-radionuclides (uranium, thorium, polonium etc.); chromosome damage
(translocations, aneuploidy, karyotype abnormalities, defective mitotic figures, chromosome
fragmentation, chromosome condensation, genome chaos etc.); and eNOX2 protein generation
(ecto-NOX disulfide-thiol exchanger 2, tNOX) as identified in cancer cells. These patients were also
positive for Mab-CTX (Monoclonal antibody to ciguatera toxin, Hokama) reactivity. In addition,
many patients were found to have STAT1 protein defects and were kappa-lambda light chain positive
(MGUS). Neurodegenerative tauopathy has been identified which may result from chronic radiation
sickness. Furthermore, bone marrow suppression has been seen and may manifest as a myelodysplastic
syndrome or a pre-leukemia/lymphoma condition.

Recently, the National CFIDS Foundation announced its Radiation Model based on cell anomalies
produced as a direct result of radiation exposure. These aberrations have been identified as cardiolipin
hydroperoxide(s) and phosphatidylserine hydroperoxide(s) and have been confirmed by other research
groups. These compounds act as cell toxicants to alter cell function because hydroperoxides induce
DNA damage and mutations. Interestingly, hypometabolism that has been previously identified in
CFIDS/ME patients, has been found to mitigate radiation induced lethality in animal models.

Currently, treatment options for CFIDS/ME patients are very limited due to the disease complexity
and because there appears to be numerous multi-organ system targets. It is well established that
radiation exposure produces a pathophysiology that combines hematopoietic, gastrointestinal, and
neurovascular changes. Ingestion or inhalation of alpha-radionuclides adds to this complexity because
many alpha-particles have long half-lives thereby acting as a chronic stimulus associated with aberrant
cell functionality. However, when alpha-particle emitting isotopes are ingested, they are far more
dangerous than their half-life or decay rate would suggest due to the high relative biological
effectiveness of alpha-radiation to cause biological damage. Alpha-radiation is an average of about
20 times more dangerous, and in experiments with inhaled alpha-emitters, up to 1000 times more
dangerous than an equivalent activity of beta emitting or gamma emitting radioisotopes.

More recently, the National CFIDS Foundation found a U.S. Patent that had identified the use of Stimol
(citrulline malate) in the treatment of Chernobyl radiation-exposed workers. According to this patent,
“Citrulline malate (Stimol) has been shown to be a successful therapeutic in humans and animal
models... Citrulline malate stimulates hepatic ureogenesis and the renal reabsorption of bicarbonates.
These metabolic actions had a protective effect against acidosis and ammonia poisoning and might
explain the anti-fatigue properties of citrulline malate in man. Successful therapeutic effects have also
been demonstrated using citrulline malate (Stimol) as an anti-fatigue compound in treatment of fatigue
syndrome in cleanup workers of the sequelae of the Chernobyl Nuclear Power accident.”
The NCF’s funded researchers will be testing Stimol/citrulline malate and other potential therapies in its radiation/mitochondrial test system as these may be of therapeutic value in our patient cohort. Could any of these possible therapies help to improve the quality of life in our patients long-term? The National CFIDS Foundation is committed to find out!

Select references:

1. National CFIDS Foundation (NCF) Announces Link between Chronic Fatigue Syndrome and Low Level Radiation Exposure; PR Newswire; August 20, 2010

2. National CFIDS Foundation’s Research Finds Chromosome Damage in Patients Diagnosed with Chronic Fatigue Syndrome and Myalgic Encephalomyelitis; PR Newswire; February 25, 2014

3. Radiation Model for Chronic Fatigue Syndrome Announced by the National CFIDS Foundation; PR Newswire; May 20, 2019


5. Mitochondrial DNA point mutations and a novel deletion induced by direct low-LET radiation and by medium from irradiated cells; Murphy JE, Nugent S, Seymour C, Mothersill C; Mutat Res. 2005 Aug 1;585(1-2):127-36.


16. Deficiency in the Expression of STAT1 Protein in a Subpopulation of Patients with Chronic Fatigue Syndrome (CFS); Knox KK, Cocchetto A, Jordan E, Leech D, Carrigan DR; American Association for Chronic Fatigue Syndrome (AACFS) Conference; Madison, Wis; Oct. 2004


18. STAT1 deficiency unexpectedly and markedly exacerbates the pathophysiological actions of IFN-alpha in the central nervous system; Wang J, Schreiber RD, Campbell IL; Proc Natl Acad Sci 2002; 99(25): 16209-16214


27. Internal contamination with medically significant radionuclides; Durakovic A; Military Radiobiology; Chapter 13, Academic Press 1987; http://www.ncf-net.org/radiation/MilitaryRadiobiologyDurakovicChapter1987.pdf

28. World famous CFIDS/ME physician is aware of radiation connection to disease; National CFIDS Foundation Medical Committee; National Forum, Fall 2012; http://www.ncf-net.org/forum/2012fall3.htm


30. Immunoassays for citrullinated proteins; U.S. Patent # 9,063,148; Applicant; Ossetrova, Natalia; Assignee: The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.; Filed: October 22, 2009; Issued: June 23, 2015

31. Dr. Natalia Ossetrova; https://www.researchgate.net/profile/Natalia_Ossetrova

32. Treatment of fatigue syndrome in the cleanup workers of the sequelae of the accident at the Chernobyl Atomic Electric Power Station; Demina MV, Zemtsova NA, Muromtseva GA; The Practitioner 1: 56-57 (in Russian), 1999